Search results

Search for "cell damage" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta potential and obtaining the toxicity profile regarding cell damage in the
  • lack such information. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had the potential to influence
  • ; cell damage; MeOx NMs (metal oxide nanomaterials); nano-QSPR; zeta potential; Introduction Engineered nanoparticles have become an integral part of our daily lives in consumable products and commercial goods. Their versatile tunable properties have made nanomaterials a center of innovation in
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • common causes of cell damage including endothelium damage [6][14]. An increased ROS concentration closely correlates with the amount of pro-inflammatory cytokines, whose participation has been confirmed to increase endothelial permeability. Histamine and bradykinin are among the pro-inflammatory
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • threat to both human and ecological health. The active ingredients of antibiotics and their fragments may cause kidney and liver cell damage in humans if they are exposed to antibiotic residues for an extended time [63][64][65]. Additionally, it has been noted that prolonged exposure to antibiotic
PDF
Album
Review
Published 03 Mar 2023

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • ]. In other cases, disruption and destabilization of the complex nanostructure subsequent to US vibration leads to drug release [28][29][30]. In addition, the ultrasonication of certain complexes can generate free radicals that can cause cell damage or activation of cellular signaling pathways [31
  • generation are recognized as the mechanism of action of US-responsive nanomaterials. These nanomaterials can act through at least one of the mechanisms. Cargo release, drug activation, cell damage, and enhanced cargo penetration, in addition to contrast enhancement, are the clinically practical consequences
PDF
Album
Review
Published 11 Aug 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • samples using ICP-MS. Measurements of viability and metabolic activity of cells To investigate the cytotoxicity of Ag on PBMCs we used two different assays that measure cell damage (LDH assay) and metabolic activity (MTS assay). LDH is a colorimetric assay that measures the membrane integrity and
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review
  • microorganisms [145][147][148]. In general, both mentioned methodologies are the most common techniques used. In case more information is needed regarding the inhibitory effect (bactericidal or bacteriostatic) or the cell damage caused by the NPs against the target microorganism, dead time tests and flow
  • death. The combination of oxidative stress, metal ion release, and non-oxidative damage affects cell structures upon NP exposure in several ways. In the following sections, these cell damage cases will be briefly explained. Cell wall damage The bacterial cell wall provides rigidity, shape, and
PDF
Album
Review
Published 25 Sep 2020

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • scavenging enzyme that converts hydrogen peroxide (H2O2) into water and oxygen, thus preventing cell damage. A reduction of the acitivity of CAT after PEG-nGO administration was observed as shown in Table 2. One hour after PEG-nGO administration, the decrease in CAT enzyme activity was significant (P* < 0.05
PDF
Album
Full Research Paper
Published 18 Apr 2019

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • may cause cell damage [36][38]. This is unlikely to happen in any realistic nanoparticle exposure scenario, where biomolecules adsorb to the nanoparticle to form a nanoparticle biomolecular corona which effectively protects the cells from such immediate damage [39][40][41]. Though the intestinal lumen
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • observed in Figure 6. In contrast, the toxic threshold surface area from LDH measurements is 0.18 m2·mL−1 for SiNP-7, only. However, the surface area interacting with the cell membrane is considerably smaller due to the tubular uptake morphology. This indicates that here the mechanism of cell damage cannot
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • stress and cell damage. The results are in accordance with reports in the literature, e.g., differential tolerance to AgNP depending on chloride concentrations and ionic strength and Ag+-induced oxidative stress in E. coli was recently demonstrated by Chambers et al. [41]. Biological responses to
PDF
Album
Full Research Paper
Published 08 Dec 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • observed in J774A.1 macrophages but not in A549 epithelial cells for the given exposure time of 1 hour. A549 cells required a much longer time of 1 hour to internalize 1 µm particles (data not shown). However, since the inhibitors began to induce cell damage after 1 to 1.5 hours, observation time could not
  • addition, other inhibitors such as statins, filipin or nystatin could be used, however, severe cell damage for those three inhibitors has been observed in earlier studies [32]. In A549 epithelial cells, the macropinocytosis and phagocytosis pathways could not be explored, as the uptake of 1 µm particles by
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014
Other Beilstein-Institut Open Science Activities